SECONDE / PHYSIQUE-CHIMIE

R-OH
R-O-R'
R—N—R' R"
O R—C—H
O R-C-R'

L'UNIVERS

Chapitre 18 : Formules et groupes caractéristiques

I/ Formules

1. Formule brute

La formule brute d'une molécule reprend tous les atomes de la molécule avec un indice permettant de connaître le nombre d'atomes de chaque type.

Exemple : C₃H₆O soit 3 atomes de carbone, 6 atomes d'hydrogène et 1 atome d'oxygène.

2. Formule développée

La formule développée d'une molécule reprend tous les atomes de celle-ci avec en plus toutes les liaisons entre atomes représentées par un trait.

Exemple:
$$H = \begin{bmatrix} H & H & H \\ I & I & I \\ C & C & C & C & -H \\ I & I & I & H \\ H & H & H \end{bmatrix}$$

3. Formule semi-développée

Le formule semi-développée reprend tous les atomes de la molécule et les liaisons, mais on n'indique pas les liaisons entre atomes de carbone et d'hydrogène.

Exemple: CH_3 - CH_2 - CH_2 - CH_3

II/ Groupe caractéristique

1. Définition

Un groupe caractéristique est un atome différent du carbone (C) ou un ensemble d'atome liés entre eux dont un au moins n'est pas un atome de carbone. C'est « une partie » d'une molécule.

Les différents groupes caractéristiques confèrent aux molécules des propriétés spécifiques. Différents groupes caractéristiques ont été établis par les chimistes. Ils vont pouvoir permettre de « prédire » la réactivité des molécules ainsi que de les nommer.

Ils permettent de classer les éléments en différentes familles chimiques.

III. Les différents groupes caractéristiques

Groupement	Nom
—о—н	Hydroxyle
-c- -c- o	Carbonyle
-c _H	Aldéhyde
−c OH	Carboxyle
— C —NH ₂	Amino
$-\stackrel{ }{\underset{ }{\operatorname{c}}}-x$	Halogéno Avec X : Cl, F, Br ou I

IV. Familles chimiques

A/ Les alcools

Un alcool est une molécule présentant un groupement hydroxyle sur une chaine carbonée, c'est à dire un atome de carbone lié par une simple liaison à un atome d'oxygène lui-même lié par une simple liaison à un atome d'hydrogène.

Leur nom est obtenu en remplaçant la terminaison –ane de l'alcane correspondant par -ol

Exemple : CH_3 - CH_2 -O-H / éthanol

B/Les cétones

Une cétone est une molécule présentant un groupement carbonyle sur une chaine carbonée, c'est-à-dire un atome de carbone lié à un atome d'oxygène par une double liaison. Leur nom est obtenu en ajoutant -i-one en remplacement du -ane de l'alcane correspondant avec i le numéro du carbone portant le groupement carbonyle.

CH₃-C-CH₃ / propan-2-one ou propanone

IV. Familles chimiques

C/ Les acides carboxyliques

Un acide carboxylique est une molécule présentant un groupement carboxyle, c'està-dire un atome de carbone lié par une double liaison à un atome d'oxygène d'une part et lié par une simple liaison à un groupement hydroxyle.

D/ Les esters

Un ester est une molécule présentant un atome de carbone doublement lié à un atome d'oxygène d'une part et d'autre part lié à un atome d'oxygène lui-même lié à un autre groupement.

CH3
$$\longrightarrow$$
 CH₂ \longrightarrow CH₃ / Ethanoate d'éthyle

IV. Familles chimiques

E/ Les amines

Une amine est une molécule présentant le groupement amino, c'est-à-dire un atome da carbone lié à un atome d'azote d'une part et à d'autres atomes de carbone ou d'hydrogène.

Exemple: CH₃ - CH₂ - NH₂ (aminoethane - ethylamine)

F/ Les amides

Une amide est une molécule présentant le groupement amido, c'est-à-dire un atome de carbone doublement lié à un atome d'oxygène et lié d'autre part à un atome d'azote.

V. Isomérie

On parle d'isomères lorsque des molécules ayant la même formule brute présentent des formules développées différentes. Exemples pour $C_4H_{10}O$:

VI. Exercice

Donner différents isomères de la molécule ayant pour formule brute $C_4H_8O_2$. Dans chaque cas, entourer les groupes caractéristiques.