
# 1ère S / PHYSIQUE-CHIMIE

# OBSERVER, COULEURS ET IMAGES



Chapitre 5:

Molécules organiques de la matière colorée



# I. Pigments et colorants

### <u>Définitions</u>

- Les colorants sont des espèces qui colorent le milieu en étant soluble dans celui-ci.
- Les pigments sont des espèces qui permettent la coloration d'un milieu mais qui ne sont pas solubles dans celui-ci : en suspension dans un liquide ou fixés à la surface d'un solide.

### Extraction et synthèse

L'extraction consiste à récupérer la substance colorée en la solubilisant. Différentes techniques chimiques peuvent être utilisées (filtration, décantation, évaporation, ...).

Les colorants peuvent être d'origine naturelle (récupérés grâce à des végétaux ou des animaux) ou d'origine synthétique (élaborés en laboratoire). Les formules chimiques et propriétés sont les mêmes que le colorant soit naturel ou synthétique.



### Introduction

On distingue une branche de la chimie appelée chimie organique : celle-ci correspond à la chimie dite « du carbone et de ses composés ». On retrouve principalement des atomes de carbone et d'hydrogène dans les molécules organiques.

#### Formules et liaisons covalentes

Grâce à la structure électronique d'un atome (voir cours de seconde), on peut prévoir le nombre de liaisons covalentes (mise en commun d'électron) que va former celui-ci.

#### Exemples:

- hydrogène H : (K)<sup>1</sup> soit **1 e<sup>-</sup> sur sa couche périphérique**, pour satisfaire à la **règle du duet** il formera **1 liaison (2-1)**.
- carbone C : (K)<sup>2</sup>(L)<sup>4</sup> soit 4 e<sup>-</sup> sur sa couche périphérique, pour satisfaire à la règle de l'octet il formera 4 liaisons (8-4).



### Formules développées, semi-développées, topologiques

Formule développée : on indique toutes les liaisons et tous les atomes.

Formule semi-développée : les liaisons avec les atomes d'hydrogène ne sont pas indiquées. On ajoute les atomes d'hydrogène à côté des atomes auxquels ils sont liés.

$$CH_3 - CH_2 - OH$$

Formule topologique : on indique pas les liaisons C-C, chaque extrémité de ligne correspond à un atome de carbone et aux atomes d'hydrogène.



#### Formule de Lewis

La formule de Lewis d'une molécule reprend tous les atomes et toutes les liaisons. On indique en plus les « doublets non liants » de chaque atome, c'est-à-dire les paires d'électrons qui ne sont pas mise en commun avec un autre atome. Les liaisons sont des « doublets liants ».

#### Exemple pour un atome :

N : (K)<sup>2</sup>(L)<sup>5</sup> soit 5 e<sup>-</sup> sur sa couche externe, l'atome formera 3 liaisons (6 e<sup>-</sup> mis en commun) et il lui restera donc 2 électrons qui formeront un doublet non liant.

Exemples de quelques formules de Lewis :

$$H - \overline{O} - H$$
  $O = CO_2$ 



#### Géométrie des molécules

Les différents doublets liants et non liants d'une molécule permettent de « prédire » la géométrie des différentes molécules. En effet les doublets des molécules cherchent à s'éloigner les uns des autres afin d'avoir un maximum d'espace :

| Doublets de l'atome central                                   | Géométrie                         |
|---------------------------------------------------------------|-----------------------------------|
| 4 doublets liants avec 4 liaisons simples                     | Tétraédrique                      |
| 4 doublets liants avec 2 liaisons simples et 1 liaison double | Plane                             |
| 4 doublets liants avec 1 liaison simple et 1 liaison triple   | Linéaire                          |
| 3 doublets liants et 1 doublet non liant                      | Pyramidale à case<br>triangulaire |
| 2 doublets liants et 2 doublets non liants                    | Coudée                            |

Voir dans le livre pour plus d'informations sur la géométrie des molécules ou sur Internet : Théorie VSPER.



### L'isomérie Z/E

Rappel : deux molécules isomères sont deux molécules présentant la même formule brute mais des formules développées différentes.

On distingue pour les molécules présentant une double liaison une isomérie spécifique appelée isomérie Z/E : celle-ci est due au fait que la rotation des atomes n'est pas possible autour d'une double liaison. Pour présenter une isomérie Z/E, une molécule doit présenter deux caractéristiques :

- Une double liaison;
- Et chaque atome doublement lié doit être lié à deux groupements différents.

Exemple avec le but-2-ène :

$$H$$
 $CH_3$ 
 $CH_$ 

Si les deux groupes les plus importants (en masse moléculaire) sont du même côté, l'isomère est appelé Z (zusammen, ensemble en allemand). Sinon il est appelé E (entgegen, opposé en allemand).



### Conjugaison

Deux liaisons doubles sont dites conjuguées si elles sont séparées par une liaison simple. L'alternance liaison simple-liaison double constitue la conjugaison.

Une molécule présentant au moins 7 liaisons conjuguées (en l'absence d'autres groupements chimiques) est généralement colorée.

### Groupes caractéristiques

D'autres groupements chimiques peuvent influencer la couleur d'une molécule tels que -OH; -NH<sub>2</sub>; -Br; ...



## III. Paramètres pouvant influencer la couleur

### Le pH

Certains colorants ont une couleur qui dépend du pH du milieu : ce sont généralement des molécules présentant des groupements -OH.

Ces molécules peuvent servir d'indicateurs colorés.

#### Les autres facteurs

De nombreux autres facteurs peuvent influencer la couleur :

- le dioxygène
- le solvant
- le support
- la température
- etc.